

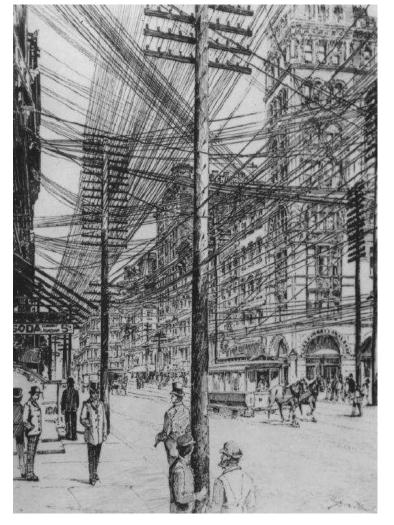
# **Superconducting cables**

## **1 Motivation**

### 2 Structure of superconducting cables

2.1 Cable types

#### **3 Transmission characteristics**


3.1 Operating parameters and four-terminal equivalent circuit3.2 Transmission characteristics3.3 AC losses

### 4 State of the Art

- 4.1 Overview
- 4.2 Application examples
- 4.3 Latest developments

## Why cables?





Manhattan "overhead" around 1880

Superconducting cables

#### Why superconducting cables?



Manhattan "underground" 2003

Superconducting cables enable significantly higher transmission capacity with the same cable diameter.



# **Motivation**

## Cable laying

- Smaller space and rout requirements (inner cities, partial underground cabling)
- Less efford in laying cables, easier approval

#### Environment and marketing

- No electromagnetic leakage fields and no soil heating
- High energy and resource efficiency

#### Operation

- Higher transmission performance
- Lower voltage level (substitution of high voltage)
- At the same outer diameter (Right of way for retrofit)
- Lower impedance
- Lower voltage rise at no load
- Lower voltage drop
- Operation with natural loading possible

## **Possible uses**



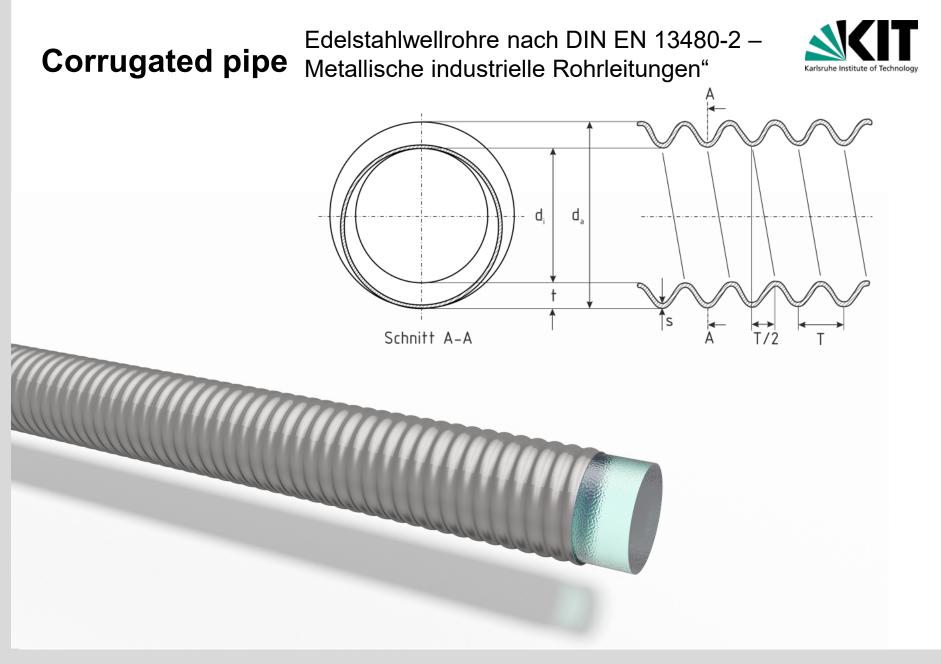
- Increasing the transmission capacity of existing conventional point-topoint cable routes (retrofit)
- Relocation of high-voltage overhead lines underground (as with conventional cable systems)
- Generator feeders and powerplant feeders
- Relocation of industrial customer connections to high-voltage substations
- High-power HVDC power transmission over long distances (in the future)
- Power transmission and distribution in metropolitan areas (retrofit)
- Grid connection of substations at distribution voltage level



# **Superconducting cables**

## **1** Motivation

# 2 Structure of superconducting cables


2.1 Cable types

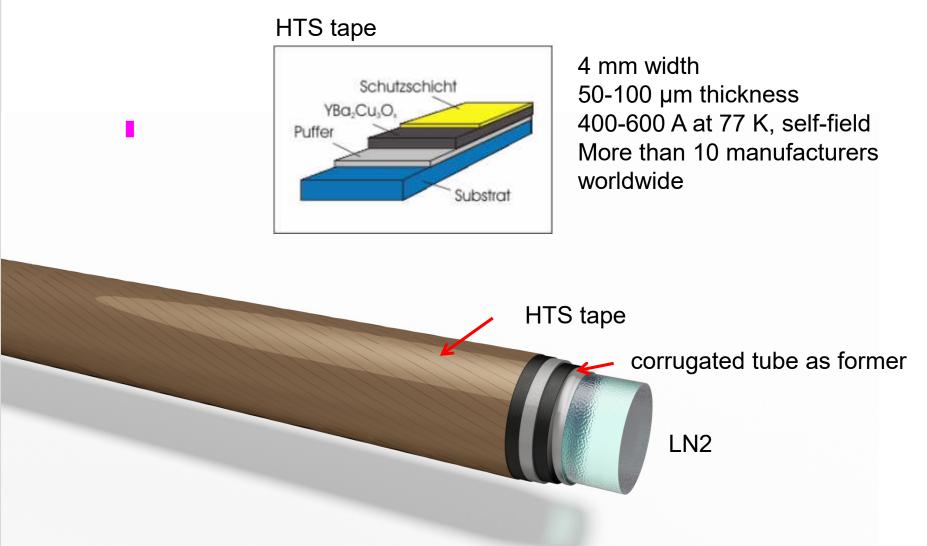
### **3 Transmission characteristics**

3.1 Operating parameters and four-terminal equivalent circuit3.2 Transmission characteristics3.3 AC losses

## 4 State of the Art

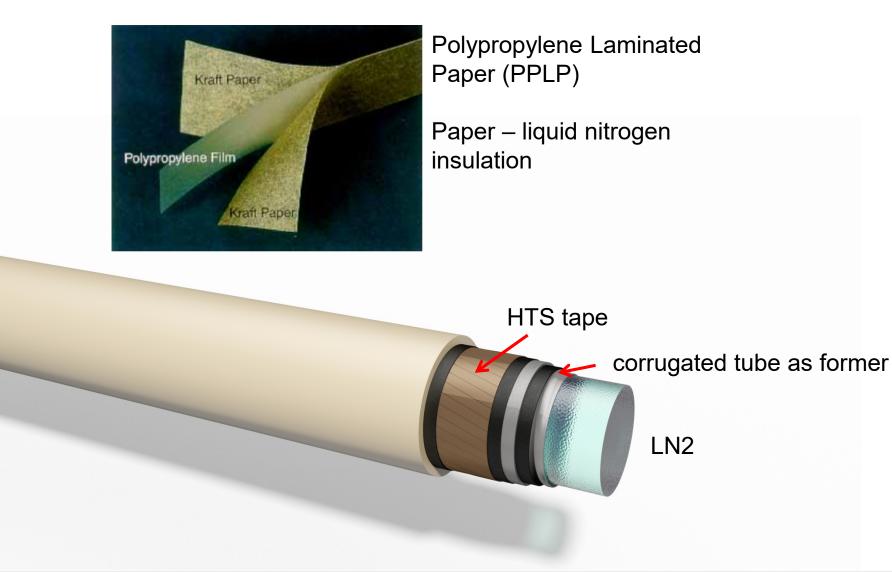
- 4.1 Overview
- 4.2 Application examples
- 4.3 Latest developments




**6 -** 02.11.2021

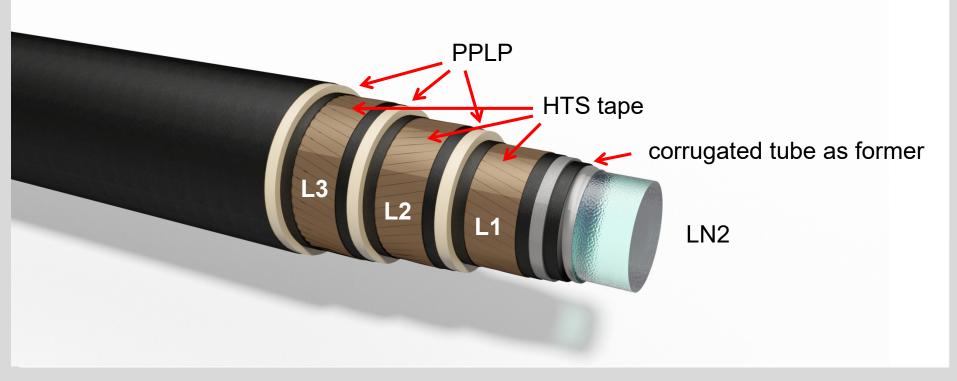
Prof. Mathias Noe- Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics


# **HTS** layer

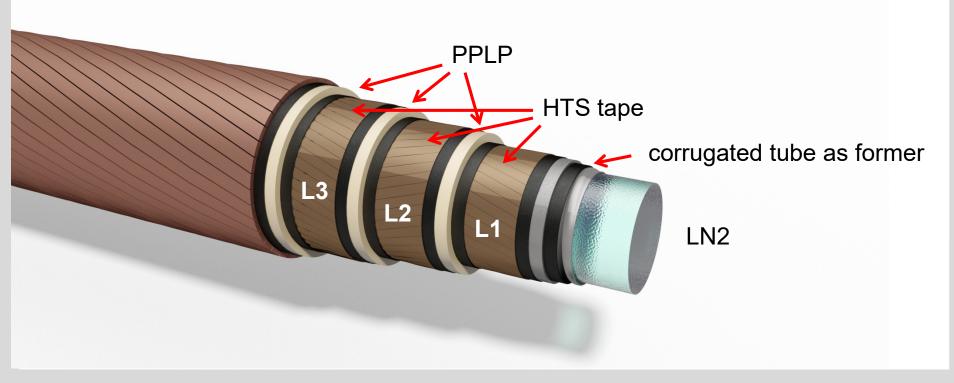





## **Dielectric insulation**






## **3-phase coaxial arrangement**

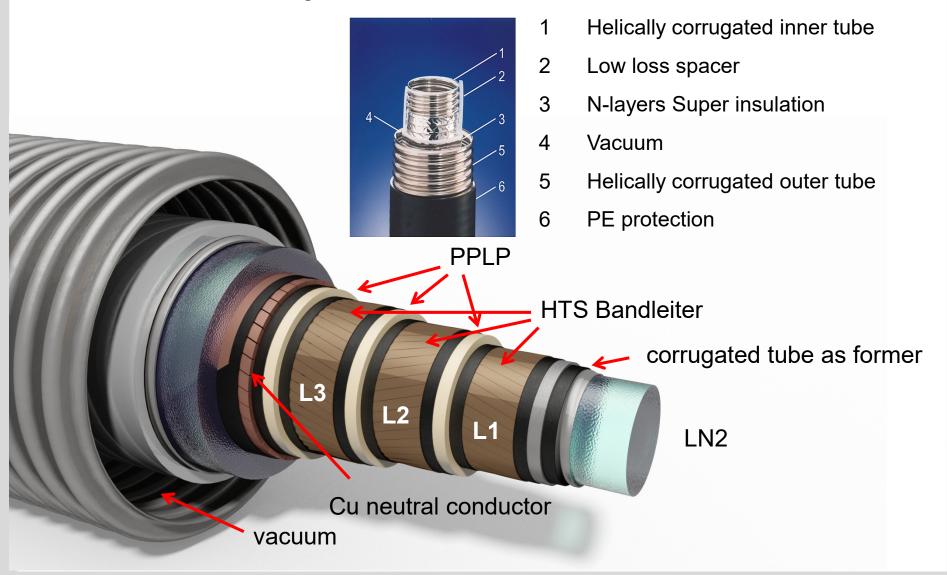




# **Cu neutral conductor**

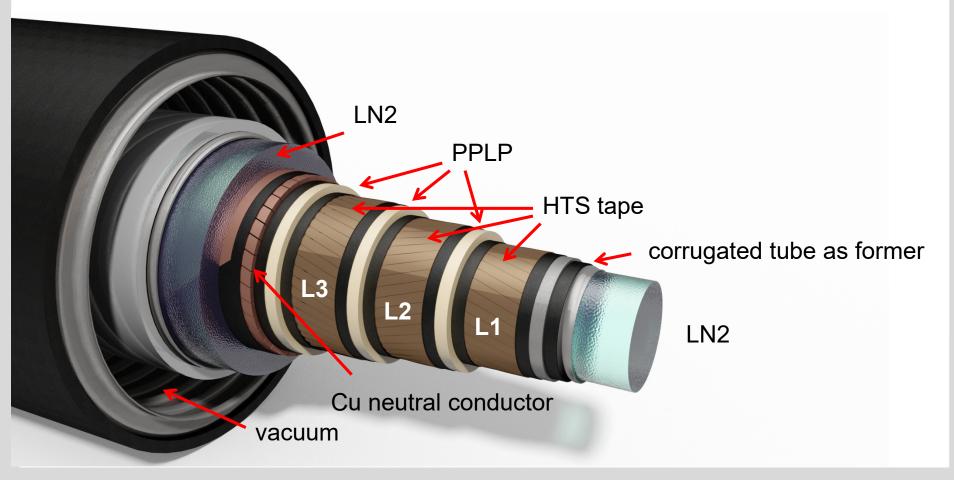





**10 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics

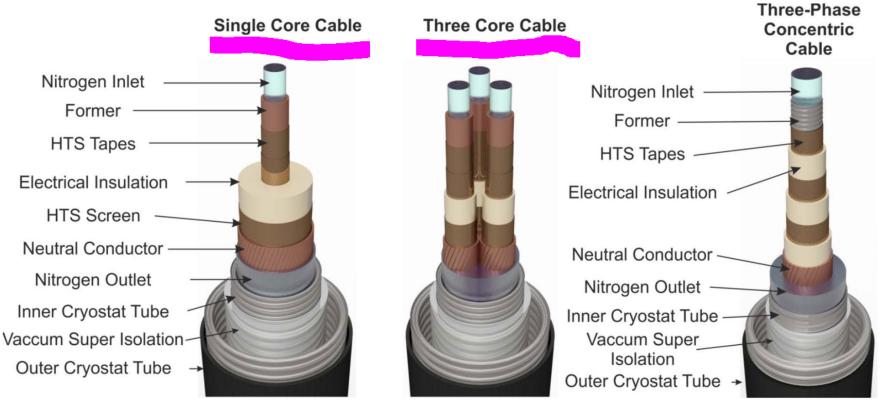

## **Thermal shell - cryostat**





## **Outer PE sheath**






**12 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems Superconducting cables Institute for Technical Physics

# **Cable types**





|                          |                       | <ul> <li>A second s</li></ul> | Three phase concentric |
|--------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Voltage level            | High-voltage > 110 kV | 30-110 kV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10-50 kV               |
| Amount of superconductor | Higher                | higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | smaller                |
| Cryostat loss            | Higher                | smaller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | smaller                |

**13 -** 02.11.2021

Prof. Mathias Noe- Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics



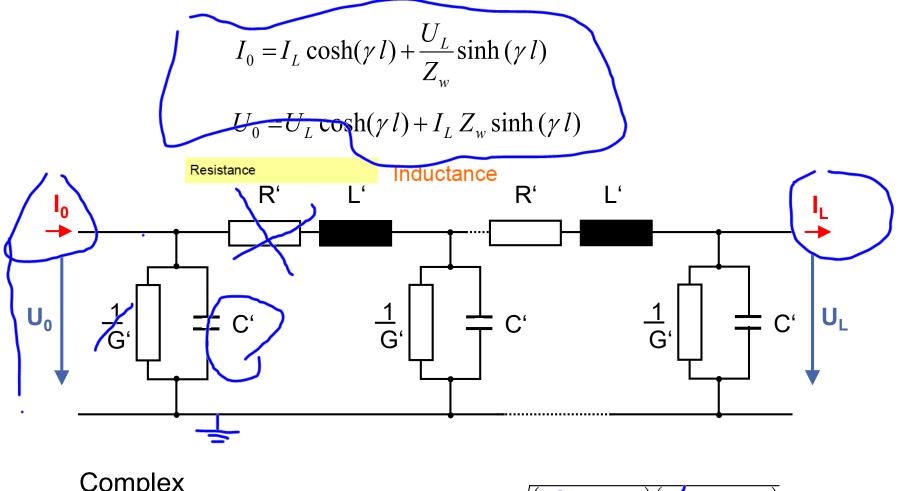
# **Superconducting cables**

## **1** Motivation

#### 2 Structure of superconducting cables

2.1 Cable types

### **3 Transmission characteristics**


3.1 Operating parameters and four-terminal equivalent circuit3.2 Transmission characteristics3.3 AC losses

### 4 State of the Art

- 4.1 Overview
- 4.2 Application examples
- 4.3 Latest developments



# Four-terminal equivalent circuit of a transmission line



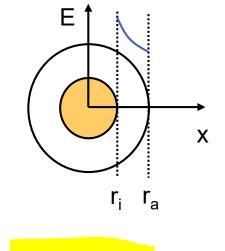
Complex propagation constant

$$\gamma = \alpha + j \beta = \sqrt{(\mathcal{R} + j \omega L')(\mathcal{C} + j \omega C')}$$

**15 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics




# **Operating parameters of a transmission cable**

Curve of the electric field in the electrical insulation

$$E(x) = \frac{U_{LE}}{x} \frac{1}{\ln\left(\frac{r_a}{r_i}\right)} \text{ for } r_i < x < r_a$$

Insulator capacitance of a coaxial cable



Capacitive charging current

 $I_C = U_{LE}\omega C_b$ 

Loop inductance of a coaxial cable

$$\frac{L}{l} = \frac{\mu_0}{2\pi} \ln\left(\frac{r_a}{r_i}\right)$$

# **Operating parameters**



|                             | <b>110 kV</b><br>cable<br>N2XS(FL)2Y RM/35 1<br>x 300 mm <sup>2</sup> | <b>110 kV</b><br>overhead<br>Al/St 265/35              | 10 kV<br>cable<br>NA2XS2Y RM/35<br>1x630 mm <sup>2</sup> | 10 kV<br>HTS cable                                   |
|-----------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| Power                       | 113 MVA                                                               | 130 MVA                                                | 8 MVA                                                    | 40 MVA                                               |
| Continuos current           | 591 A                                                                 | 680 A                                                  | 462 A                                                    | 2310 A                                               |
| Loop resistance             | 95,5 mΩ/km<br>(40°C)                                                  | 118,3 mΩ/km                                            | 60,1 mΩ/km<br>(40 °C)                                    | 0 Ω/km                                               |
| Loop inductance             | 1 <mark>88,7 mΩ/km</mark><br>1,75 10 <sup>-3</sup> pu/km              | <mark>296,3 mΩ/k</mark><br>3,17 10 <sup>-3</sup> pu/km | <mark>. 85,6 mΩ/km</mark><br>6,84 10 <sup>-3</sup> pu/km | 11,4 mΩ/km<br><mark>4,56 10<sup>-3</sup>pu/km</mark> |
| Insulator<br>capacitance    | 149,1 nF/km                                                           | 8,0 nF/km                                              | 727,0 nF/km                                              | 2880,6 nF/km                                         |
| Charging current            | 2,97 A/km                                                             | 0,159 A/km                                             | 1,31 A/km                                                | 5,2 A/km                                             |
| tan δ                       | 0,001                                                                 | -                                                      | 0,004                                                    | 0,0012                                               |
| Reference<br>impedance      | 107,4 Ω                                                               | 93,3 Ω                                                 | 12,5 Ω                                                   | 2,5 Ω                                                |
| characteristic<br>impedance | 63,7 Ω                                                                | 343,1 Ω                                                | 19,35 Ω                                                  | 3,54 Ω                                               |
| Natural loading             | 190 MW                                                                | 35,2 MW                                                | 5,16 MW                                                  | 28,1 MW                                              |

**17 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics

# **Operating parameters**



# Elementary components of 380 kV transmission lines with a current of 3600 A

|                                     |                | overhea<br>d | cable   | supercondcu<br>ting cable | Gas<br>insulated |
|-------------------------------------|----------------|--------------|---------|---------------------------|------------------|
| Loop inductance<br>L'               | (mH/km)        | 0,80         | 0,48    | 0,13                      | 0,2              |
| Insulator<br>capacitance <i>C</i> ' | (nF/km)        | 13           | 230     | 158                       | 55-70            |
| Loop resistance<br>R'               | $(m\Omega/km)$ | 36           | 7,2     | >1                        |                  |
| characteristic impedance            |                | 248 Ω        | 45, 6 Ω | 28,6 Ω                    | 60,3-53,4        |
| Natural loading                     |                | 582 MW       | 3,16 GW | 5,0 GW                    | 2,39-2,7 GW      |



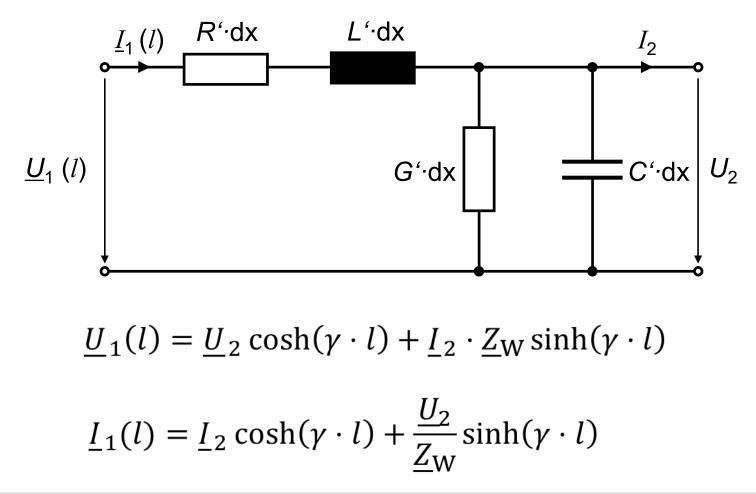
# **Superconducting cables**

## **1** Motivation

#### 2 Structure of superconducting cables

2.1 Cable types

### **3 Transmission characteristics**


3.1 Operating parameters and four-terminal equivalent circuit
3.2 Transmission characteristics
3.3 AC losses

### 4 State of the Art

- 4.1 Overview
- 4.2 Application examples
- 4.3 Latest developments



Schematic representation of the elementary component of a transmission line



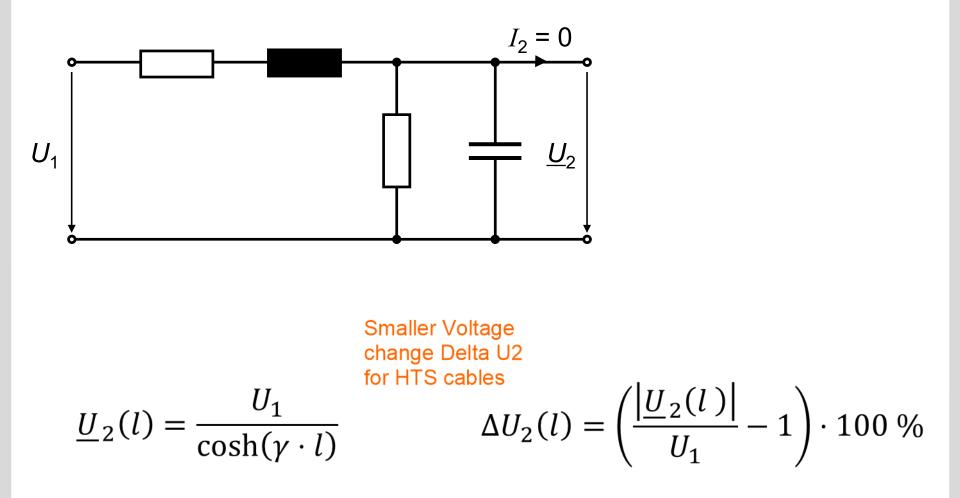


Characteristic impedance and surge impedance loading (SIL) or natural loading

propagation constant γ

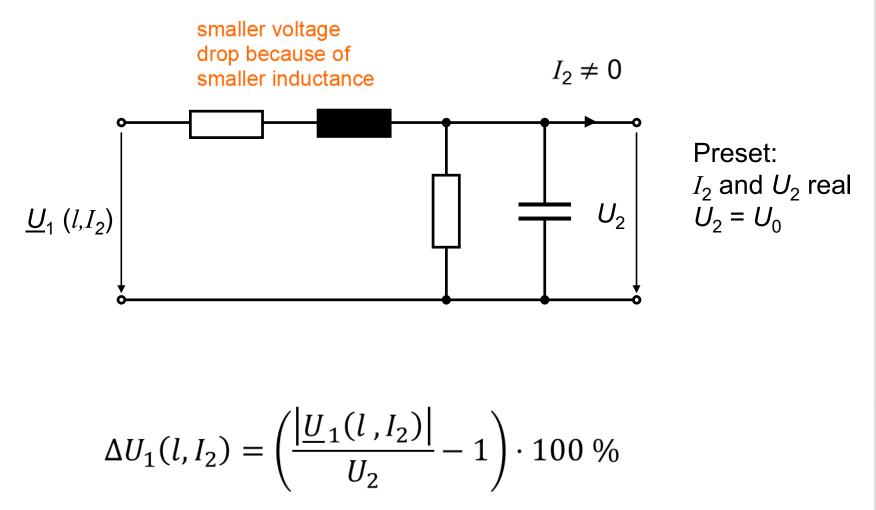
Natural loading P<sub>nat</sub>

P<sub>nat</sub>


**21 -** 02.11.2021

Prof. Mathias Noe- Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics




No load





Voltage drop



Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems



Results

Smaller inductance, higher capacitance

Characteristic impedance of HTS cables smaller than that of conventional cables at the same voltage

This results in higher natural load of HTS cables

HTS cables can be operated with natural loads

HTS cables have less charging currents than conventional cables with reference to same load

HTS cables have a smaller voltage drop



# **Superconducting cables**

## **1** Motivation

#### 2 Structure of superconducting cables

2.1 Cable types

#### **3 Transmission characteristics**

3.1 Operating parameters and four-terminal equivalent circuit3.2 Transmission characteristicss3.3 AC losses

#### 4 State of the Art

- 4.1 Overview
- 4.2 Application examples
- 4.3 Latest developments

# AC losses in superconducting cables



#### Loss types in conventional cables

- Conduction losses
  - DC resistance
  - Skin effect
  - Proximity effect
- Dielectric losses
- Sheath losses and reinforcement losses

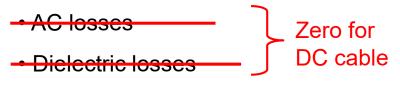
Superconducting cables

Loss types in superconducting cables

#### ZDF Mission X: Der Stromkrieg broadcasted on 4. Oktober 2006

"Mit Supraleitern kann man elektrischen Strom vollkommen ohne Verluste über größte Längen transportieren"

"With superconductors, electric current can be transported over great lengths with absolutely no losses."


# AC losses in superconducting cables

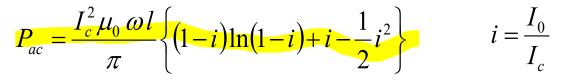


#### Loss types in conventional cables

- Conduction losses
  - DC resistance
  - Skin effect
  - Proximity effect
- Dielectric losses
- Sheath losses and reinforcement losses

# Loss types in superconducting cables




- Thermal losses
  - Cryostat
  - Termination
- Liquid nitrogen pumps and auxiliary

# AC losses in superconducting cables



#### AC losses

The AC losses in a cable can be estimated by assuming a superconducting hollow cylinder in self-field.



#### **Dielectric losses**

 $P_{th} = \frac{2\pi\lambda_{iso}(T_a - T_{K\ddot{u}hl})}{\ln(\frac{r_{th,a}}{n})}$ 

The superconducting cable represents a cylindrical capacitor with capacitance C.

$$P_{d} = \omega C \hat{U}_{r}^{2} \tan \delta \qquad \text{mit} \qquad \frac{C}{l} = \frac{2 \pi \varepsilon_{0} \varepsilon}{\ln(\frac{r_{el,a}}{r_{el,i}})}$$
Thermal losses

Superconducting cables

The following applies to the heat input per conductor length for cylindrical symmetry :

**28 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

# AC losses in superconducting cables in comparison

## 110 kV, 3 kA, 1000 m 2-VPE cable parallel

- Conduction losses
- (1600 mm<sup>2</sup>, 1500 A, 90° C)
  - DC losses 30,8 W/m/phase
  - Skin effect
  - Proximity effect
- Dielectric losses
- sheath losses and

reinforcement losses

#### Total losses 194 kW (I<sub>max</sub>)

#### 110 kV, 3 kA, 1000 m 1-HTS cable

- AC losses ≤ 1 W/m/phase (target)
- Dielectric losses 0,4 W/m/phase
- Thermal losses
  - Cryostat 1-1,5 W/m/phase
  - Termination 20-40 W/kA
- Efficiency cooling unit 1/15-1/20

Total losses 112 kW (I<sub>max</sub>)

+5 %



# AC losses in superconducting cables in comparison



Overview of losses for two **superconducting** 380 kV systems with a rated current of 3.6 kA and a route length of 3200 m

| Loss type           | Power loss            | Power loss           | Power loss          |
|---------------------|-----------------------|----------------------|---------------------|
|                     | $0,1 \cdot I_{\rm N}$ | 0,5 · I <sub>N</sub> | $1 \cdot I_{\rm N}$ |
| Cooling load        | 45329 W               | 46303 W              | 59806 W             |
| AC losses           | 1,0 W                 | 662 W                | 13188 W             |
| Dielectric losses   | 5956 W                | 5956 W               | 5956 W              |
| Cryostat losses     | 38400 W               | 38400 W              | 38400 W             |
| Current lead losses | 732 W                 | 1045 W               | 2022 W              |
| Termination losses  | 240 W                 | 240 W                | 240 W               |
| Losses at RT        | 719,5 kW              | 735,0 kW             | 949,3 kW            |
| Losses at RT        | 719,5 kW              | 735,0 kW             | 949,3 kW            |

Overview of losses for four **conventional** systems at a rated current of 1.8 kA per system and a route length of 3200 m for 2500 mm<sup>2</sup> cross-section

|                   | Power loss            | Power loss            | Power loss          |
|-------------------|-----------------------|-----------------------|---------------------|
| Loss type         | $0,1 \cdot I_{\rm N}$ | $0,5 \cdot I_{\rm N}$ | $1 \cdot I_{\rm N}$ |
| Resistance losses | 14 kW                 | 339 kW                | 1356 kW             |
| Dielectric losses | 136 kW                | 136 kW                | 136 kW              |
| Total losses      | 149 kW                | 475 kW                | 1492 kW             |

**30 -** 02.11.2021

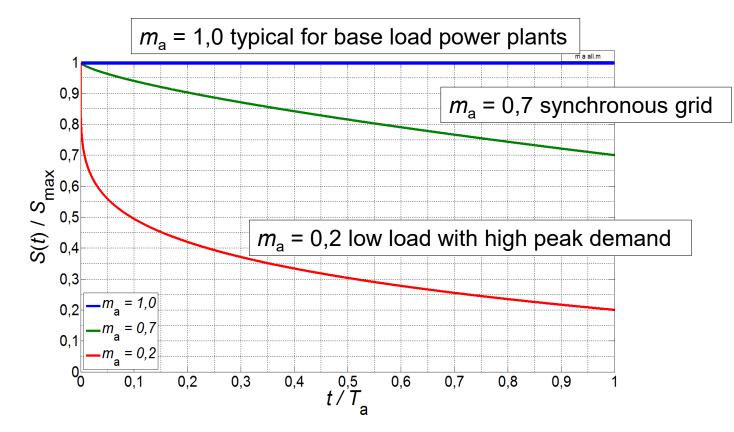
Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics



# Calculation of the annual energy loss Load factor

The load factor m<sub>a</sub> specifies the power curve S(t) in relation to the maximum power of a transmission system. It is a measure of the utilization rate.


$$\frac{S(t)}{S_{\text{max}}} = 1 - (1 - m_{\text{a}}) \cdot \left(\frac{t}{T_{\text{a}}}\right)^{m_{\text{a}}}$$

All loss components that are dependent on the load (current) must be weighted with the distibution of  $\frac{S(t)}{S_{\text{max}}}$ .

31 - 02.11,2021 hias Noe Lecture W\$ 21/22 Superconducting Power Systems Wathias Noe Voriesung W\$13/14 -Superconducting cables



# Calculation of the annual energy loss Load factor





# Comparison of annual energy loss for superconducting cable (380 kV, 3.6 kA, 3.2 km)

| Cable type/<br>annual energy loss | annual energy loss $m_{\rm a}=0.3$ MWh | annual energy loss $m_{\rm a}=0.5$ MWh | annual energy loss $m_{\rm a}=0.7$ MWh |
|-----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| conventional underground cable    |                                        |                                        |                                        |
| - Resistance losses               | 1894                                   | 4455                                   | 7320                                   |
| - Dielectric losses               | 1189                                   | 1189                                   | 1189                                   |
| Total annual energy loss          | 3082                                   | 5643                                   | 8509                                   |
| Superconducting cable             |                                        |                                        |                                        |
| - AC losses                       | 103                                    | 321                                    | 701                                    |
| - Current lead thermal            | 100                                    | 100                                    | 100                                    |
| - Current lead electric           | 29                                     | 68                                     | 112                                    |
| - Cryostat                        | 2670                                   | 2670                                   | 2670                                   |
| - Termination                     | 33                                     | 33                                     | 33                                     |
| - Dielectric losses               | 828                                    | 828                                    | 828                                    |
| Total annual energy loss          | 3763                                   | 4020                                   | 4444                                   |



# **Superconducting cables**

## **1** Motivation

#### 2 Structure of superconducting cables

2.1 Cable types

#### **3 Transmission characteristics**

3.1 Operating parameters and four-terminal equivalent circuit3.2 Transmission characteristics3.3 AC losses

### 4 State of the Art

#### 4.1 Overview

4.2 Application examples

4.3 Latest developments

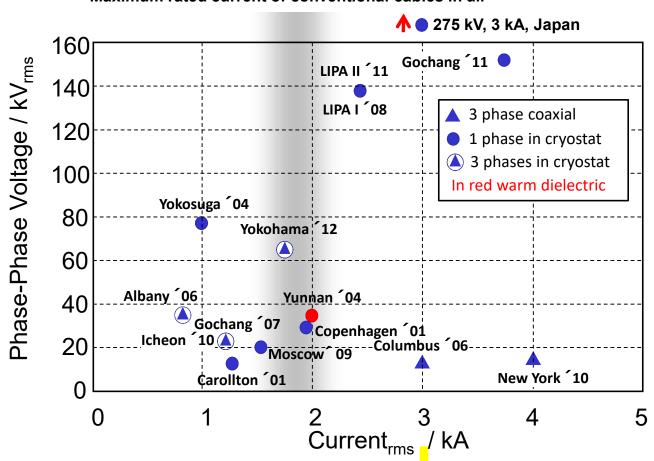
# **Superconducting AC Cables**

#### State-of-the-Art



| Manufacturer | Place ,Country, Year     | Data                    | HTS        |
|--------------|--------------------------|-------------------------|------------|
| SECRI        | Shanghai, China, 2021    | 35 kV, 2.2 kA, 1200 m   | YBCO       |
| Nexans       | Chicago, US, 2020        | 12 kV, 200 m            | YBCO       |
| LS Cable     | Singal, Korea, 2019      | 22.9 kV, 50 MVA, 1000 m | YBCO       |
| LS Cable     | Jeju, Korea, 2016        | 154 kV, 600 MVA, 1000 m | YBCO       |
| Nexans       | Essen, Deutschland, 2014 | 10 kV, 2.4 kA, 1000 m   | BSCCO      |
| Sumitomo     | Yokohama, Japan, 2013    | 66 kV, 1.8 kA, 240 m    | BSCCO      |
| LS Cable     | Icheon, Korea, 2011      | 22.9 kV, 3.0 kA, 100 m  | BSCCO      |
| LS Cable     | Icheon, Korea, 2009      | 22.9 kV, 1.3 kA, 500 m  | BSCCO      |
| Nexans       | Long Island, US, 2008    | 138 kV, 2.4 kA, 600 m   | BSCCO/YBCO |
| LS Cable     | Gochang, Korea, 2007     | 22.9 kV, 1.26 kA, 100 m | BSCCO      |
| Sumitomo     | Albany, US, 2006         | 34.5 kV, 800 A, 350 m   | BSCCO      |
| Ultera       | Columbus, US, 2006       | 13.2 kV, 3 kA, 200 m    | BSCCO      |
| Sumitomo     | Gochang, Korea, 2006     | 22.9 kV, 1.25 kA, 100 m | BSCCO      |
| Furukawa     | Yokosuka, Japan, 2004    | 77 kV, 1 kA, 500 m      | BSCCO      |

#### More than 10 years of operational experience and no HTS degradation reported.


**35 -** 02.11.2021

Prof. Mathias Noe- Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics

## State of the Art





Maximum rated current of conventional cables in air



# **Superconducting cables**

# **1** Motivation

### 2 Structure of superconducting cables

2.1 Cable types

### **3 Transmission characteristics**

3.1 Operating parameters and four-terminal equivalent circuit3.2 Transmission characteristics3.3 AC losses

### 4 State of the Art

4.1 Overview

4.2 Application examples

4.3 Latest developments

### State-of-the-Art



Actual system proven in operational environment System complete and qualified System prototype demonstration in operational environment Technology demonstrated in relevant environment **Technology validated in relevant environment Technology validated in lab Experimental proof of concept** Technology concept formulated **Basic principles observed** 



TRI

High

TRL

Med.

Low TRL



2000 – First HTS cable in public grid operation by Southwire



Three separate phases Voltage 12.5 kV Current 1250 A Length 30 m HTS BSCCO Total loss 1490 W @ 77 K, 600 A 230 W per terminal 1 W/m/Phase Cryostat 0.2 W/m/Phase @ 600 A **Experimental proof of concept** 



Stovall et.al. IEEE TASC Vol. 11, No.1, March 2001

# 2000 2005 2010 2015 2020 2025

**39 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems Superconducting cables Institute for Technical Physics



2006 – First three phase concentric design in long term (~ 1 year) field test by Ultera (Southwire, nkt cables)

Three phase co-axial design Voltage 13.2 kV Current 3000 A Length 200 m HTS BSCCO Ic > 7000 A at 78.5 K 2 W/m Cryostat

Superconducting cables

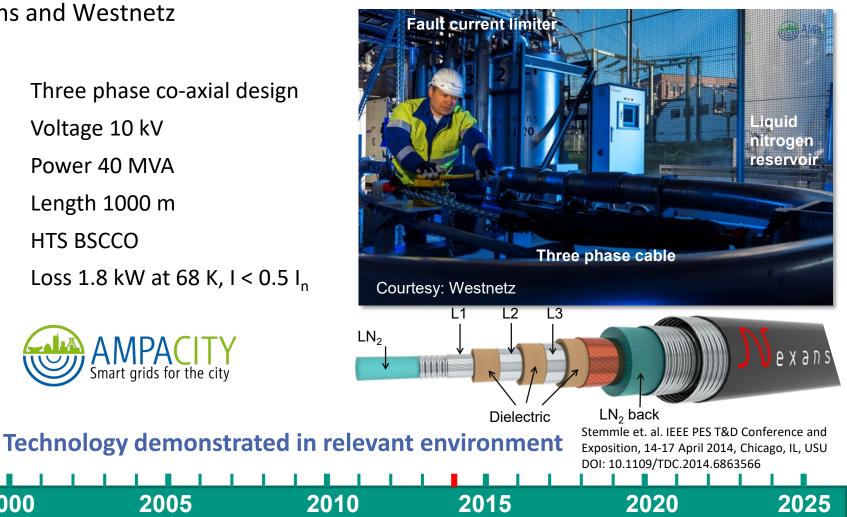


Pictures: nkt cables

### **Technology validated in relevant environment**



**40 -** 02.11.2021


Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics



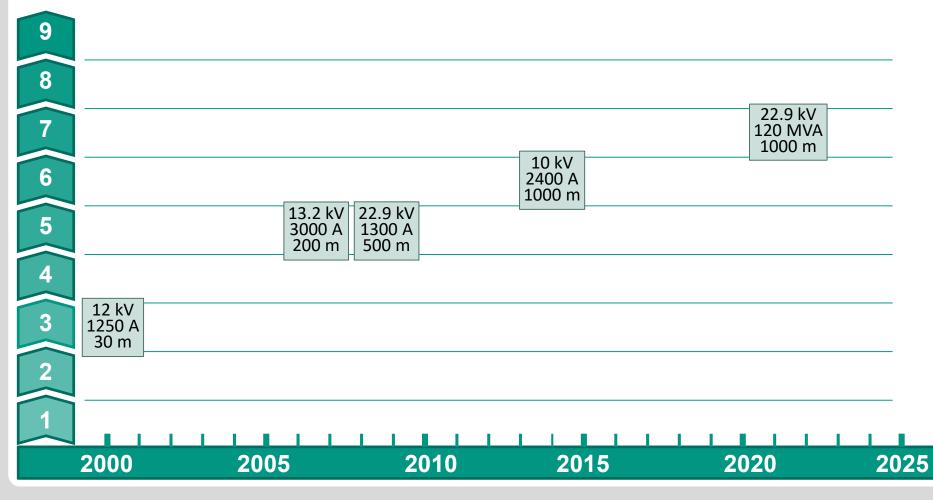
2014 – First long term (> 5 years) and continous operation in the grid of Essen by Nexans and Westnetz

Three phase co-axial design Voltage 10 kV Power 40 MVA Length 1000 m HTS BSCCO Loss 1.8 kW at 68 K,  $I < 0.5 I_n$ Smart grids for the city



**41 -** 02.11.2021

Prof. Mathias Noe- Lecture WS 21/22 Superconducting Power Systems


Institute for Technical Physics

Superconducting cables

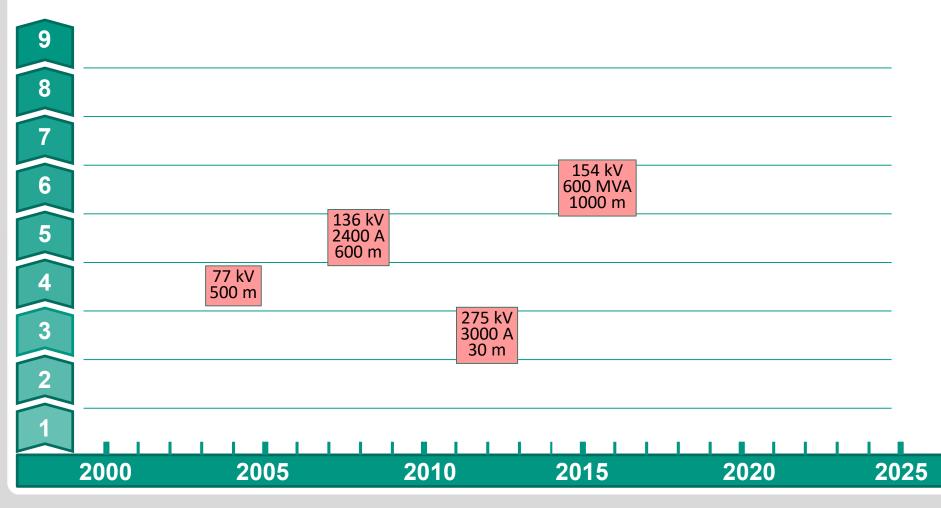


### Development of TRL

Three phase concentric



**42 -** 02.11.2021


Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

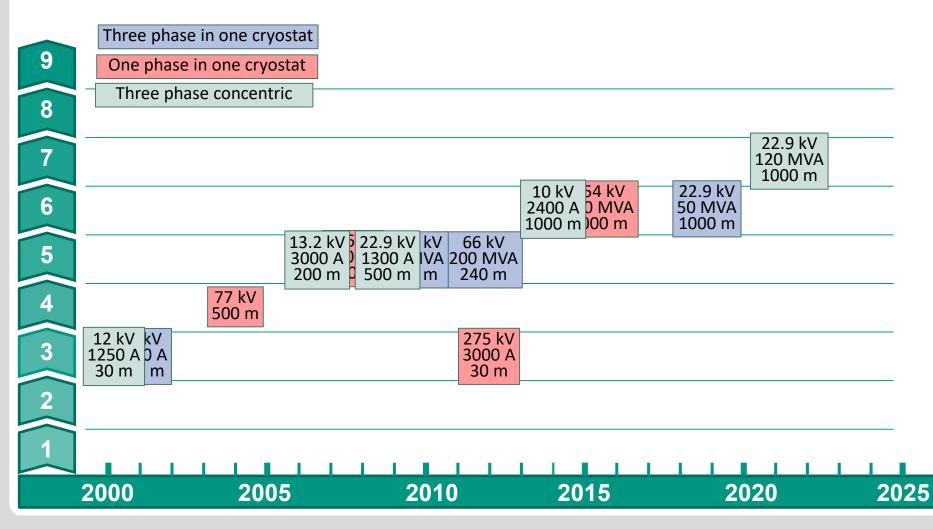
Institute for Technical Physics



### **Development of TRL**

One phase in one cryostat




**43 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics



### Development of TRL



**44 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics

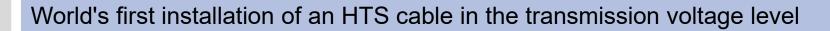
# **Application examples**

138 kV, 2,4 kA, 610 m LIPA cable

### Commisioning

November 2007

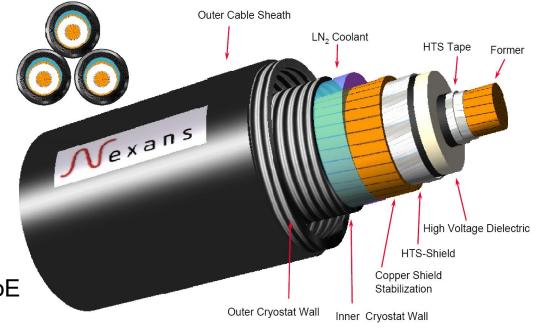
### Locationb


Holbrook Substation Long Island, New York

### **Partners**

Long Island Power Authority, Nexans, American SuperConductor, Air Liquide, DoE

### Superconductor


155 km BSCCO 2223 wire

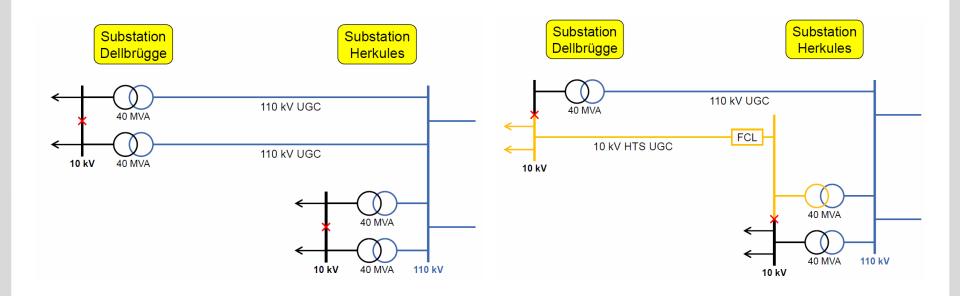


**45 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems Superconducting cables






# **AmpaCity Project**





### Conventional Situation in Essen

### HTS Cable plus FCL Situation in Essen



A transformer and a high voltage cable can be replaced by a medium voltage HTS cable in combination with a fault current limiter.

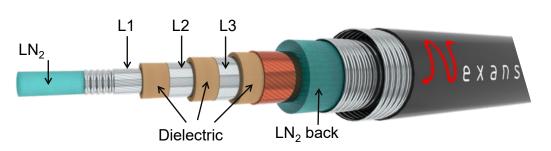
**46 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems Superconducting cables Institute for Technical Physics

# **AmpaCity Project**






- Objectives
  - Build and test a 40 MVA, 10 kV, 1 km superconducting cable in combination with a fault current limiter

Carlsruhe Institute of Technology

- Project partners
  - Innogy, Nexans, KIT
- Budget
  - 13.5 Mio. €
- Duration
  - Sept. 2011- Feb. 2016

Mexans 🕻

Superconducting cables



Funded by:

Supported by:

Federal Ministry of Economics and Technology



on the basis of a decision by the German Bundestag

**47 -** 02.11.2021

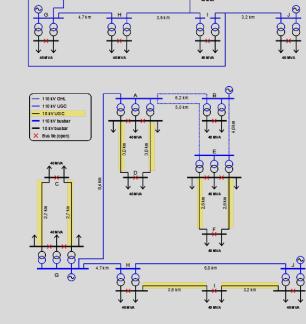
innogy

#### **48 -** 02.11.2021

ring

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

#### Superconducting cables


# Variant target grid A:

**Pre-study AmpaCity Project** 

**8**8 ↓\*↓

Expansion with "classical" high voltage technology

### Variant target grid B: Erection of an HTS medium voltage cable



#### Dispensable devices for a new grid concept

- 12.1 km of 110 kV cable systems

Smart grids for the city

- 12 x 110 kV cable switchgear
- 5 x 110/10 kV, 40 MVA transformers
- 5 x 110 kV transformer switchgear
- 5 x 10 kV transformer switchgear

#### Additionally required devices

- + 23.4 km of 10 kV HTS cable system
- 16 x 10kV cable switchgear
- + 3 x 10 kV bus ties

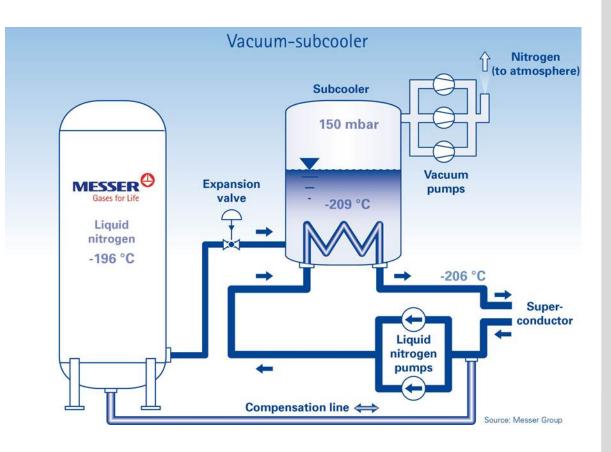


# **AmpaCity Cooling Unit**





Liquid nitrogen is used


- as heat transfer medium

- as cooling agent
- LIN is pumped through the superconducting cable

LIN is recooled in the subcooler (to -206°C)

LIN vaporizes at 150 mbar(a) (forced by vacuum pumps)

LIN temperature decreases to -209°C (expansion through the regulation valve)



Source: F. Herzog, et.al., "Cooling unit for the AmpaCity project – One year successful operation", Cryogenics Volume 80, Part 2, December 2016, Pages 204-20, DOI: 10.1016/j.cryogenics.2016.04.001

**49 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics

# AmpaCity Cooling Unit





### Energy-data comparison (regular operation point)

| Cable-cooling demand:            | 1.8 kW (@ 67 K) |
|----------------------------------|-----------------|
| Total required cooling capacity: | 3.4 kW (@ 64 K) |
| Liquid nitrogen consumption:     | 68 kg/h         |

| total:                                   | 43 kW at RT |
|------------------------------------------|-------------|
| Pel. (other equipment):                  | <u>4 kW</u> |
| Pel. (vacuum pumps):                     | 5 kW        |
| Exergetic effect LN2 transport (130 km): | 1 kW        |
| Required electricity for N2-liquefying:  | 33 kW       |

For comparison:

Pel. for mechanical cooling:

75 to 100 kW\*



\*(dependant on the availability of cooling water)

Source: F. Herzog, et.al. , "Cooling unit for the AmpaCity project – One year successful operation", Cryogenics Volume 80, Part 2, December 2016, Pages 204-20, DOI: 10.1016/j.cryogenics.2016.04.001

**50 -** 02.11.2021

# **AmpaCity Cooling Unit**





### <u>HTS-cable</u>

Voltage Capacity

Cooling demand (actual):

### Cooling unit

Cooling capacity – required: Cooling capacity – total: LN2 consumption: Pel.

### 10,000 V 40,000 kW 1.8 kW (@ 67 K)

| currently       | ➔ design   |
|-----------------|------------|
| 1.8 kW (@ 67 K) | → 4.0 kW   |
| 3.4 kW (@ 64 K) | → 5.6 kW   |
| 68 kg/h         | → 110 kg/h |
| 9 kW            | → 13 kW    |

### Redundancy

2 circulation pumps (instead of 1)

Superconducting cables

3 vacuum pumps (instead of 2)

almost 100% redundancy with 5% additional investment

Source: F. Herzog, et.al. , "Cooling unit for the AmpaCity project – One year successful operation", Cryogenics Volume 80, Part 2, December 2016, Pages 204-20, DOI: 10.1016/j.cryogenics.2016.04.001

# **AmpaCity Project**





### **Lessons learned**

- The unsymmetrical capacitances need compensation.
- A few leaks in the area of the terminations could be eliminated during commissioning.
- The cable can remain in operation during automatic restart after a short circuit.

### Result

The cable and FCL installation fulfills all technical and operational requirements.

# Status

- The operation has been extended.
- Business cases are under development.



# **Superconducting cables**

### **1** Motivation

### 2 Structure of superconducting cables

2.1 Cable types

### **3 Transmission characteristics**

3.1 Operating parameters and four-terminal equivalent circuit3.2 Transmission characteristics3.3 AC losses

### 4 State of the Art

4.1 Overview

4.2 Application examples

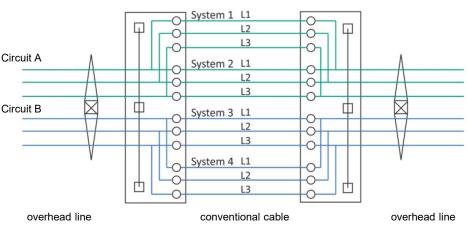
4.3 Latest developments

# Cable projects in implementation and planning





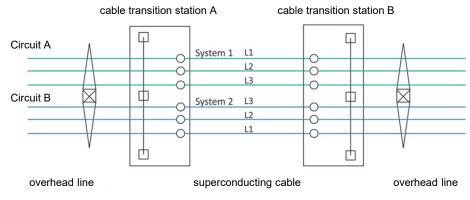
| Project<br>(AC 380 kV underground<br>cable) | Commis-<br>sioning<br>(GDP)<br>Year | Route<br>length<br><i>km</i> | Cable<br>cores<br>No. | Cable<br>sections<br>(plan)<br><i>km</i> |
|---------------------------------------------|-------------------------------------|------------------------------|-----------------------|------------------------------------------|
| A120 Wahle - Mecklar                        | Q3 2021                             | 153,3                        | 12                    | 21,7                                     |
| A210 Emden/Ost –<br>Conneforde              | Q4 2021                             | 63                           | 24                    | 16                                       |
| A220 Wilhelmshaven –<br>Conneforde          | Q4 2020                             | 34,2                         | 12                    | 9,2                                      |
| A240 Conneforde-<br>Cloppenburg-Merzen      | Q4 2023                             | 90                           | 12                    | 27                                       |
| A250 Stade – Landesbergen<br>Section 2-4    | Q4 2023                             | 160                          | 12                    | 23                                       |
| A250 Bereich Stade Section 1                | Q 1 2020                            | 100                          | 24                    | 0                                        |
| A260 Dörpen/West –<br>Niederrhein           | Q2 2019                             | 31,3                         | 12                    | 3,1                                      |
| A280 Ganderkesee -<br>Wehrendorf            | Q2 2021                             | 60,7                         | 12                    | 12,5                                     |
| A310 Ostküstenleitung                       | Q2 2022                             | 120                          | 12                    | 12                                       |
| Sum (km) of AC 380 kV cable required        | 2019 - 2023                         |                              |                       | 1.686                                    |


# 380 kV partial underground cabling



# Structure

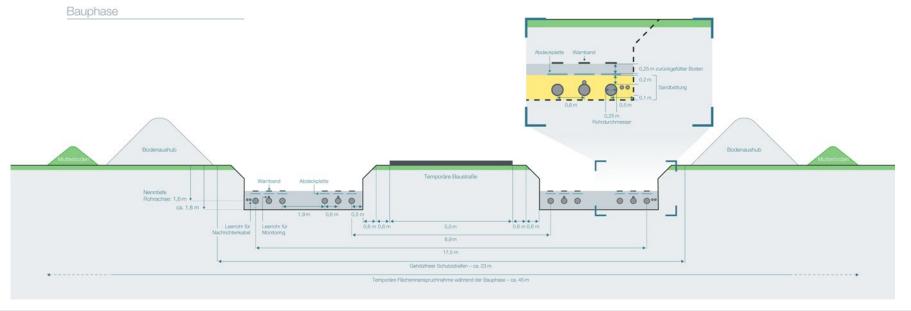
- Conventional cable
  - Two parallel cables per phase required
  - 12 cables in total


### Partial conventional underground cabling with 4 systems cable transition station A cable transition station B



### HTS cable

- One cable per phase
- 6 cables in total






# 380 kV partial underground cabling



- Minimum specification according to thermal design
- Two cables per phase are required for each phase => 12 cables
- Single cable spacing 0.6 m with depth 1.6 m
- Total width of protective strip 23 m
- Sand bedding in the direct vicinity of the cable
- Temporary double width for storing excavation



# 380 kV partial underground cabling



To design a superconducting cable, only the following parameters are required

| Rated voltage $380 \text{ kV}$ Rated current $3600 \text{ A}$ Overcurrent I"K $63 \text{ kA}, 300 \text{ ms}$ Load factor $0.7$ Length $3,2 \text{ km}$ inner cryostat tubedielectricHTS layerK Cu shieldOuter cryostat tube                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Overcurrent I"<br>K63 kA, 300 msLoad factor0.7Length3,2 kminner cryostat tube<br>dielectricHTS layer<br>KLN2 in<br>KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK< | Rated voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 380 kV                                                                 |
| Load factor $0.7$ Length $3,2 \text{ km}$ inner cryostat tube<br>dielectricHTS layer<br>$\leftarrow$ $LN_2 inFormerFormer$                                                                                                                       | Rated current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3600 A                                                                 |
| Length $3,2 \text{ km}$<br>inner cryostat tube<br>dielectric<br>HTS layer<br>$\leftarrow$ $LN_2$ in<br>$\leftarrow$ $LN_2$ in                                                                                                                    | Overcurrent I" <sub>K</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63 kA, 300 ms                                                          |
| inner cryostat tube<br>dielectric<br>K HTS layer<br>K LN <sub>2</sub> in<br>K Some $K$ Cu shield                                                                                                                                                 | Load factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                    |
| $\overbrace{K}^{\text{dielectric}}_{\text{HTS layer}} HTS \text{ layer} \leftarrow LN_2 \text{ in}$                                                                                                                                              | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,2 km                                                                 |
|                                                                                                                                                                                                                                                  | The shield | dielectric<br>HTS layer<br>← LN <sub>2</sub> in<br><sup>K</sup> Former |

**57 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems

Institute for Technical Physics

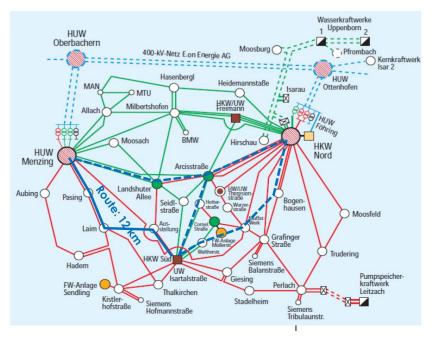


SWM SuperLink cable in Munich

Superconducting cables

Project for development of a 110 kV, 500 MVA cable

| SW//M                                                            | Stadtwerke München                  | Netzbetreiber 400 V – 400 kV<br>Städtische Infrastruktur |
|------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------|
| NK7                                                              | NKT Cables Group                    | HTS - Kabelhersteller<br>Hoch- und Höchstspannungskabel  |
| C<br>THE LINDE GROUP                                             | Linde Group                         | Technische Gase<br>Kryotechnik & Kryoanlagenbau          |
| THEVA                                                            | THEVA                               | HTS – Bandleiterhersteller                               |
| Fachhochschule<br>Südwestfalen<br>University of Appiled Sciences | FH SWF, Soest                       | Hochspannungstechnik<br>Kabelprüftechnik, Simulation     |
| Caristuke institute of technology                                | Karlsruhe Institut of<br>Technology | Expertise für HTS - Netztechnik                          |


This is considered the first economic application, as a 10 km tunnel structure for a 380 kV cable could be avoided.



### URGING PROBLEM OF THE CITY ULITLITY

Rebuilding the distribution grid and establish a 500 MVA connection across the city

- Necessary change in cable technology Non-availability of gas-pressure cables
- Strong renewal pressure: 80+ % cables installed before 1980 Enormous volume >90 HV cable sections
- Connection of gas power station in the south to transmission grid (NW) across the city
- Avoidance of new 400/110 kV main substation (space, cost)





### **ALTERNATIVE SOLUTIONS**

Transport of 500 MVA over 12 km









# 400 kV XLPE cable system

### 400 kV overhead line

E.g. tunnel solution, as in Berlin, London etc.

Same for GIL

### Not feasible in the city

# Multiple 110 kV XLPE cable systems

5 systems & routes Limited bending radii

Soil warming (spacing)

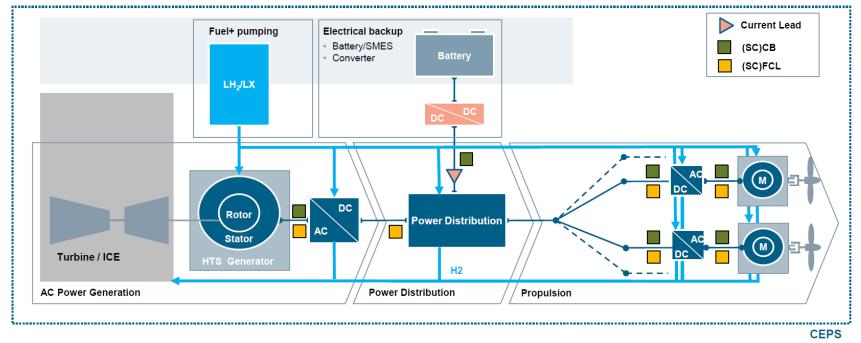
### 110 kV HTS cable

Novel technology



## **ALTERNATIVE SOLUTIONS - ASSESSMENT**

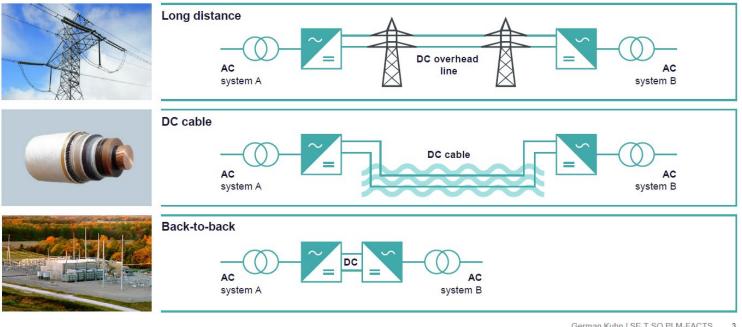
Transport of 500 MVA across 12 km in densely populated area


| Criteria              | 400 kV XLPE | 400 kV OHL | Multiple 110 kV | 110 KV HTS |
|-----------------------|-------------|------------|-----------------|------------|
| Minimum space         | -           |            | <b>(</b>        | •          |
| Public acceptance     |             |            | <u> </u>        | $\bigcirc$ |
| Economic feasibility  |             | <u> </u>   |                 | <u>.</u>   |
| Technical maturity    | $\bigcirc$  | $\bigcirc$ | $\bigcirc$      | <u>.</u>   |
| City grid integration |             |            | $\bigcirc$      | $\odot$    |
| Power density         | $\bigcirc$  | $\bigcirc$ |                 | $\bigcirc$ |
| Low loss              |             | <u></u>    |                 | $\bigcirc$ |

### The HTS option is very attractive – but needs development

# **Electric Aircraft**




Example of a power supply scheme of an aircraft with electric propulsion system



Source: Martin Boll, Rolls Royce

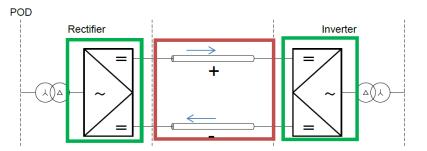


### High voltage high power DC connection



2020-11-12

German Kuhn | SE T SO PLM-FACTS 3 Siemens Energy, 2020


### In Germany several 525 kV DC cable connections are planned from north to south

**63 -** 02.11.2021

Prof. Mathias Noe– Lecture WS 21/22 Superconducting Power Systems Superconducting cables Institute for Technical Physics



### Medium voltage high power DC solutions



| Types from Siemens Energy            | Var. 1   | Var. 2      | Var. 3        |
|--------------------------------------|----------|-------------|---------------|
| DC voltage converter                 | ± 24 kV  | ± 30 kV     | ± 50 kV       |
| Real power converter $\cos \phi 0.9$ | 30-70 MW | up to 90 MW | up to 150 MVA |
| Max. spec. DC Phase resistance       |          | 0.01 Ω /km  |               |

Transmission power and length of MVDC is limited by the parameters of conventional cables. Is it possible to achieve a GW transmission power with MVDC technology and HTS cables?

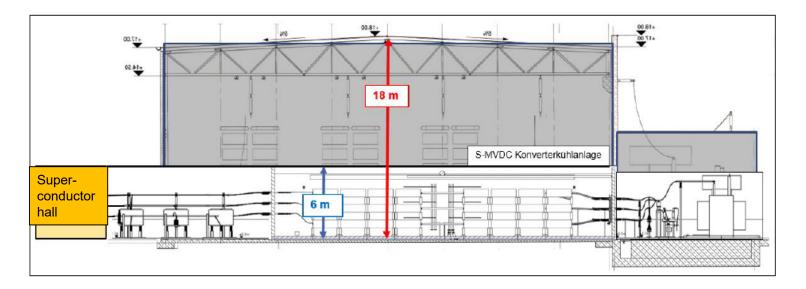
**64 -** 02.11.2021

64

Institute for Technical Physics



#### Station A DC-Link Station B €≻-Coolir Ð Uac-a Uac-b €≯ ₽ -<1 62--₹ Ø. Ð-Udc-0 Control Control B


### Medium voltage high power DC solutions with HTS DC cable

### Main advantages

- GW transmission power with several MVDC stations in parallel
- Smaller line width and higher transmission power
- Lower permission effort

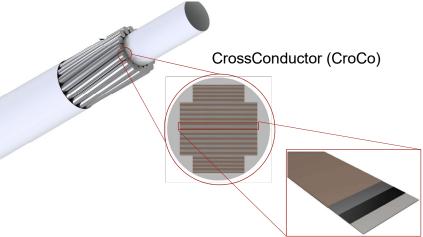


HTS MVDC high power transmission Application study with Utility, Vision Electric Super Conductors, Messer, Siemens Energy and KIT Comparison of size of converter buildings



66



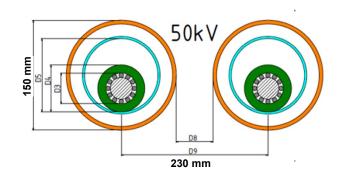

### HTS MVDC high power transmission Application study with Utility, Vision Electric Super Conductors, Messer, Siemens Energy and KIT Comparison of size of converter buildings

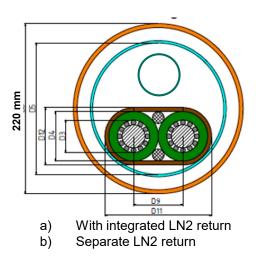
|                             | HVDC – 1 GW – S-MVDC |                       |  |  |  |
|-----------------------------|----------------------|-----------------------|--|--|--|
| DC voltage                  | ± 320 kV             | ± 50 kV               |  |  |  |
| Hall space                  | 4800 m <sup>2</sup>  | 3300 m²               |  |  |  |
| Outdoor space               | 1000 m <sup>2</sup>  | 1000 m <sup>2</sup>   |  |  |  |
| Total space                 | 5800 m²              | 4300 m <sup>2</sup>   |  |  |  |
|                             | 100 %                | 75 %                  |  |  |  |
| Building height (converter) | 18 m                 | 6 m                   |  |  |  |
| Building volume             | 90.000 m³            | 22.500 m <sup>3</sup> |  |  |  |
|                             | 100 %                | 25 %                  |  |  |  |



HTS MVDC high power transmission Application study with Utility, Vision Electric Super Conductors, Messer, Siemens Energy and KIT S-MVDC Cables for 1 GW

# One pole in one cryostat





# arlsruhe Institute of Technology

HTS MVDC high power transmission Application study with Utility, Vision Electric Super Conductors, Messer, Siemens Energy and KIT

S-MVDC Cables for 1 GW

### One pole in one cryostat





Two poles in one cryostat

### Cryostat

- Laying similar to pipeline
- Corrugated tube up to 500 m
- Plain tube length up to 16 m
- on-site welding L = appr. 1 km

### **HTS Phase conductor**

Transport length L = 1 - 5 km

Incl. electr. insulation, and mech. protection

Optional with HTS-shield

### Electromagnetic design that fulfills short-circuit specification with maximum temperature and forces

### HTS MVDC high power transmission Application study with Utility, Vision Electric Super Conductors, Messer, Siemens Energy and KIT Summary of main characteristic

 $\odot$ 

 $(\mathbf{R})$ 

 $(\dot{e})$ 

 $\odot$ 

 $(\tilde{a})$ 

 $\odot$ 

### Cable routing

Highest acceptance
 Lowest impact on environment
 Lowest realisation time
 Less effort with cable laying

### **Converter stations**

- Full HVDC functionality
   Smaller footprint 75 %
- Smaller converter buildings 25
- %

### **Operation cost**

Investment cost

Little higher maintenance

Additional cooling

Less effort for laying

10 % savings at converter

HTS cable more expensive

Lower losses

### Superconducting DC cables enable a 1 GW MVDC power transmission.



# **Opportunities for superconducting cables**



### **Overview on Superconducting Cable Applications**

|                                                | Typical Length | TRL 1 | TRL2       | TRL 3 | TRL 4 | TRL 5  | TRL 6      | TRL 7 | TRL 8   | TRL 9 |
|------------------------------------------------|----------------|-------|------------|-------|-------|--------|------------|-------|---------|-------|
|                                                | ,, U           |       |            |       |       |        |            |       |         |       |
| AC                                             |                |       |            |       |       |        |            |       |         |       |
| Inner city medium voltage (6-30 kV)            | few km         |       |            |       |       |        |            | (X)   |         |       |
| Inner city high voltage (110-220 kV)           | few km         |       |            |       |       |        | X          |       |         |       |
| High voltage transmission (380 kV)             | few 100 km     |       | <b>(X)</b> |       |       |        |            |       |         |       |
| High voltage partial in ground cables (380 kV) | few km         |       |            |       |       |        |            |       |         |       |
| Generator feeder (6-30 kV)                     |                |       |            |       |       |        |            |       |         |       |
| DC                                             |                |       |            |       |       |        |            |       |         |       |
| Elektrolysis industry (einige 10 kA)           | few 10 m       |       |            |       |       | X      |            |       |         |       |
| Aluminium industry (> 100 kA)                  | few 100 m      |       |            |       |       | (X)    |            |       |         |       |
| Data Center                                    | few 10 m       |       |            |       | X     |        |            |       |         |       |
| Connection of renewable energies               | few km         |       |            |       |       | (X)    |            |       |         |       |
| Railway feeder                                 | few km         |       |            |       |       |        | <b>(X)</b> |       |         |       |
| Medium voltage DC transmission                 | ~ 100 km       |       |            |       |       |        |            |       |         |       |
| High voltage DC transmission                   | ~ 100-1000 km  |       |            |       |       |        |            |       |         |       |
| Elektric aircraft power supply                 | ~ 10-100 m     |       |            |       |       |        |            |       |         |       |
| Degaussing of ships                            |                |       |            |       |       |        |            |       | X       |       |
|                                                |                |       | _ow TRL    |       |       | Medium | TDI        |       | High TI |       |

Many applications for HTS cables exist ranging from a few kA to several 100 kA and from kV to more than 100 kV.

**71 -** 02.11.2021

71

# Learning goals



- Being able to describe the essential properties of superconducting cables in comparison with conventional cables
- Be able to point out the advantages and disadvantages of superconducting cables
- Being familiar with the design and construction of superconducting cables and being able to select applications for the different designs and voltage levels
- Understand and be able to explain differences in transmission characteristics compared to conventional transmission lines
- Understand and be able to demonstrate the current state of development
- Be able to point out further developments